3.5.21 \(\int \sqrt {d-c^2 d x^2} (a+b \cosh ^{-1}(c x))^n \, dx\) [421]

Optimal. Leaf size=253 \[ -\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {2^{-3-n} e^{-\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {2^{-3-n} e^{\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

-1/2*(a+b*arccosh(c*x))^(1+n)*(-c^2*d*x^2+d)^(1/2)/b/c/(1+n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)+2^(-3-n)*(a+b*arccosh
(c*x))^n*GAMMA(1+n,-2*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+d)^(1/2)/c/exp(2*a/b)/(((-a-b*arccosh(c*x))/b)^n)/(c*x
-1)^(1/2)/(c*x+1)^(1/2)-2^(-3-n)*exp(2*a/b)*(a+b*arccosh(c*x))^n*GAMMA(1+n,2*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2
+d)^(1/2)/c/(((a+b*arccosh(c*x))/b)^n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {5906, 3393, 3388, 2212} \begin {gather*} \frac {2^{-n-3} e^{-\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}-\frac {2^{-n-3} e^{\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {c x-1} \sqrt {c x+1}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{n+1}}{2 b c (n+1) \sqrt {c x-1} \sqrt {c x+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n,x]

[Out]

-1/2*(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^(1 + n))/(b*c*(1 + n)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (2^(-3 -
n)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (-2*(a + b*ArcCosh[c*x]))/b])/(c*E^((2*a)/b)*Sqrt[-
1 + c*x]*Sqrt[1 + c*x]*(-((a + b*ArcCosh[c*x])/b))^n) - (2^(-3 - n)*E^((2*a)/b)*Sqrt[d - c^2*d*x^2]*(a + b*Arc
Cosh[c*x])^n*Gamma[1 + n, (2*(a + b*ArcCosh[c*x]))/b])/(c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*((a + b*ArcCosh[c*x])/b
)^n)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5906

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c))*Simp[(d
 + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Subst[Int[x^n*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]],
 x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p, 0]

Rubi steps

\begin {align*} \int \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \, dx &=\frac {\sqrt {d-c^2 d x^2} \int \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int (a+b x)^n \sinh ^2(x) \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int \left (\frac {1}{2} (a+b x)^n-\frac {1}{2} (a+b x)^n \cosh (2 x)\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int (a+b x)^n \cosh (2 x) \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int e^{-2 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{4 c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int e^{2 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{4 c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{2 b c (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {2^{-3-n} e^{-\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {2^{-3-n} e^{\frac {2 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.50, size = 214, normalized size = 0.85 \begin {gather*} \frac {2^{-3-n} d e^{-\frac {2 a}{b}} \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-n} \left (2^{2+n} e^{\frac {2 a}{b}} \left (a+b \cosh ^{-1}(c x)\right ) \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n-b (1+n) \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \Gamma \left (1+n,-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+b e^{\frac {4 a}{b}} (1+n) \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \Gamma \left (1+n,\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )\right )}{b c (1+n) \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n,x]

[Out]

(2^(-3 - n)*d*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(a + b*ArcCosh[c*x])^n*(2^(2 + n)*E^((2*a)/b)*(a + b*ArcCos
h[c*x])*(-((a + b*ArcCosh[c*x])^2/b^2))^n - b*(1 + n)*(a/b + ArcCosh[c*x])^n*Gamma[1 + n, (-2*(a + b*ArcCosh[c
*x]))/b] + b*E^((4*a)/b)*(1 + n)*(-((a + b*ArcCosh[c*x])/b))^n*Gamma[1 + n, (2*(a + b*ArcCosh[c*x]))/b]))/(b*c
*E^((2*a)/b)*(1 + n)*Sqrt[d - c^2*d*x^2]*(-((a + b*ArcCosh[c*x])^2/b^2))^n)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{n} \sqrt {-c^{2} d \,x^{2}+d}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x)

[Out]

int((a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)^n, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)^n, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{n}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))**n*(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))**n, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^n\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))^n*(d - c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*acosh(c*x))^n*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________